chapter 1 COMPLEX FORMULAS
 InFocus

Most spreadsheet users are comfortable with simple formulas such as =B2+B3 and simple functions such as SUM, but there is much more that can be done with formulas and functions. Simple formulas and functions are suitable for many uses, but there may be occasions when you need to create formulas of much greater complexity. Excel provides techniques for doing this and ensuring that the formulas are correct and accurate.

In this session you will:

\checkmark gain an understanding of how to scope a formula
\checkmark gain an understanding of how to develop a long-hand complex formula
\checkmark learn how to prepare a worksheet prior to building a complex formula
\checkmark learn how to commence a complex formula
\checkmark learn how to add more operations to a complex formula
\checkmark learn how to edit in a complex formula
\checkmark learn how to add more complexity to a long formula
\checkmark learn how to copy nested functions
\checkmark learn how to switch to manual recalculation
\checkmark learn how to paste values from formulas
\checkmark learn how to document a formula using comments.

Scoping A Formula

Complex formulas are created by embedding one or more formulas and functions within another this is sometimes referred to as nesting. For example, you may wish to sum half a dozen cells,
then multiply the result by 20% of another value. There are several components to this formula (for example, summing and dividing) that can be nested together to create a more complex formula.

The Scope of a Formula

All formulas perform an operation and have a specific outcome. Complex formulas perform several operations within the one formula but still have a specific outcome. In these formulas the several operations are nested within the one formula and act as building blocks to achieve the outcome. There are several recommended steps to scoping a complex formula:

1. Determine what the outcome of the formula should be
2. Determine the operations (and therefore the sub-formulas and functions) required to achieve this outcome
3. Translate these operations into Excel formula-jargon by writing them out long-hand
4. Commence by entering the base operation (either a formula or a function) and testing it
5. Add the next component and test the result
6. Repeat step 4 until the outcome is achieved.

The Case Study

Our case study spreadsheet calculates a dividend payable to superannuation investors. Here are the investors and their investment details:

We need to create a formula in column G, the outcome of which is to calculate the dividend payable to each client.
The dividend is calculated by multiplying the original investment (in column E) by a percentage based on the investment scale originally chosen by the investor (in column \boldsymbol{F}.
The percentage to be used is based on a sliding scale which has been entered into a table as shown at the right. We can use a VLOOKUP function to extract the percentage from the table.
But there's a further complication: investments made earlier than June 30, 2004, are entitled to a 5\% addition as a bonus to their dividend. Given that there are decisions to be made based on the sign-up date we can use the IF function to determine whether a bonus is payable or not.

4	A	B	C	D	E	F	G	H
1	Alpheius Global Enterprises							
2	Superannuation Dividends							
3								
4	Firstname	Lastname	Title	Joined	Investment	Scale	Dividend	
5	Pedro	Kavana	Mr	15/05/2005	10,000	C		
6	Jessica	Dunn	Miss	12/04/2004	12,000	A		
7	Tim	Nyguen	Mr	13/05/2004	3,000	A		
8	Fabian	Considine	Mr	12/01/2004	12,500	C		
9	Rose	Jovanovski	Ms	13/02/2004	4,500	C		
10	India	Beaumont	Ms	14/03/2005	2,300	B		
11	Bryn	Underwood	Mr	12/03/2005	1,200	A		
12	Sylvia	Schenk	Ms	1/03/2004	2,300	B		
13	Courtney	Perera	Miss	23/02/2004	15,000	C		
14	Shivanthe	Rasheed	Ms	21/01/2005	23,000	C		
15								
16								

-	A	B	C	D	E
1					
2					
3	Bonus Eli	Date:	30/06/2004		
4		Bonus:	5\%		
5					
6					
7	Investment	Risk (A)	Growth (B)	Cons'tive (C)	
8	1,000	3\%	2\%	1\%	
9	5,000	4\%	3\%	1\%	
10	10,000	5\%	4\%	2\%	
11	15,000	6\%	5\%	2\%	
12	20,000	7\%	6\%	4\%	
13	25,000	8\%	8\%	5\%	
14					

Long-Hand Formulas

The best way to develop a complex formula is by developing each of the components first and then combining them. By writing each of the parts in sentence form, you will be able to understand
the logic of each more easily. You can then establish where the individual parts go in the overall scheme of your formula, create a base function, and then build your formula from there.

The Formula's Outcome

The formula's outcome can usually be expressed as a pseudo-formula. For example, our case study formula can be written as follows:
=Original Investment Amount * (Dividend Percentage + Applicable Bonus Percentage)
The next step is to add more detail to each of these components.

The Original Investment Amount

In our case study this will be the value that is in column E. So, our formula for the first client begins with: =E5

The Dividend Percentage

We'll use a VLOOKUP function to find the appropriate percentage from the percentages table. The VLOOKUP function has three arguments - the value to look up, the table location, and the column to take the result from. Writing it out long-hand results in:

VLOOKUP(Original Investment, Percentages Table, Column based on Original Scale)

Writing this for our first client will look like:
VLOOKUP(E5,A8:D13...
We can't complete the formula yet because we haven't worked out how to choose the correct column from the table. Remember, this is based on the original scale chosen by the client when the investment was made. The logic for the column would be: if the scale is A then select column 2; if the scale is B then select column 3, if the scale is C then select column 4. Therefore we need to use an IF function. IF functions only return either a true or a false answer. For example the first part of the formula would be ass follows:

IF(Scale = A,2,3)
This formula will return the value in column 2 if the scale is A. If it is either B or C (or anything else) it will return the value in column 3. To work around this we can nest another IF function to test to see if it is B :

IF(Scale = A, 2, IF (Scale $=$ B, 3,4)
Here, a second IF statement has been used in the false position of the first IF statement. If the scale is anything but A the first IF function will default to the second (nested) IF function. If the scale is B the true position from the second IF statement will be returned. If the scale is neither A nor B the false position of the second IF function will be returned. Writing it for the first client the formula so far appears as:

```
=E5 * VLOOKUP(E5, A8:D13, IF(F5="A",2, IF(F5="B",3,4) ))
```

Notice how the number of left and right brackets match.

The Bonus

The bonus is a percentage amount (as shown in cell C4) and is based on a cut-off date (as shown in C3). A bonus is paid if the investment was started before the date in cell B4. So an IF function should be able to provide the desired outcome:

IF(Start is earlier than bonus date, add bonus to the percentage, otherwise add nothing) Translating this into a formula for the first client the function would be:

IF(D5<C3, C4, 0)

The Complete Formula

=E5*(VLOOKUP(E5,A8:D13,IF(F5="A",2,IF(F5="B",3,4)))+IF(D5<C3,C4,0))
Remember that, firstly, we are dealing with some values in a different worksheet, so the addressing will need to be different than that shown above. Secondly, we have enclosed the lookup table calculation and the calculation of the bonus together within brackets so that they are performed before the result is multiplied by the investment.

Preparing For Complex Formulas

Complex formulas are created by nesting formulas and functions within formulas. Since formulas and functions usually rely on cell referencing, complex formulas end up with many
cell and range addresses written into them. Excel allows you to give more meaningful names to cells and ranges in a workbook thus making it easier to work with and understand complex formulas.

Try This Yourself:

©
Before starting this exercise you MUST open the file E1318 Complex Formulas_1.xlsx...

1
Click on the Clients worksheet tab Spend a few moments studying the worksheet. This worksheet is where our complex formula will be built...

Click on the Constants worksheet tab
This worksheet contains key information (constants) used to calculate dividends for the clients...
3 Click in cell $\boldsymbol{A 8}$, hold down shift, then click in cell D13 to select the range A8:D13
This is the range that represents a lookup table to be used in the complex formula...
4 Click in the Name box to the left of the Formula Bar, as shown
(5) Type Dividend, then press Enter to name the range Dividend, as shown
6 Click in cell C3, click in the Name box, type BonusDate, then press Enter
Range names can't contain spaces,

(4)

5 so we've capitalised the first letter of each word and joined them together...
7 Click in cell C4, click in the Name box, type BonusRate, then press Enter

For Your Reference..

To name a range or cell in a worksheet:

1. Select the desired range or cell
2. Click in the Name box next to the Formula Bar
3. Type the desired name, then press Enter

Handy to Know...

- If you make a mistake with a range name you can edit and/or delete it (to start again) using the Name Manager in the Defined Names group on the FORMULAS tab.

Creating The Base Formula

Complex formulas, like simple formulas, need to have a starting point. It is recommended that when working with a nested formula, you enter the most intricate of the formulas or functions in
the operation as a starting point, thus making it the base formula. In our case study the calculation of the dividend is arguably the most intricate.

Try This Yourself:

Continue using the previous
※ © file with this exercise, or
ஸ゙ㄴ open the file E1318 Complex Formulas_2.xlsx...

1 Click on the Clients worksheet tab, then click in cell G5
(2) Type $=$ then click in cell E5 This is the investment amount...
(3) Type *VLOOKUP(

4 Click in cell E5 again, then type , (a comma)

5
Click on the FORMULAS tab, then click on Use in Formula in the Defined Names group to display a list of created names

6
Select Dividend to paste the name into the formula

7
Type ,2) then press Enter to complete the formula For testing purposes we'll use just the first column of the dividend table to make sure the formula works...

8 Examine the formula to see if it is producing the correct result (you may need a calculator)

(2)

6

G6	-	: \times	f_{x}					
A	A	B	c	D	E	F	G	H
1	Alpheius Global Enterprises							
2	Superannuation Dividends							
3								
4	Firstname	Lastname	Title	Joined	Investment	Scale	Dividend	
5	Pedro	Kavana	Mr	15/05/2012	10,000	C	500	
6	Jessica	Dunn	Miss	12/04/2013	12,000	A		
7	Tim	Nyguen	Mr	13/05/2013	3,000	A		
8	Fabian	Considine	Mr	12/01/2013	12,500	C		
9	Rose	Jovanovski	Ms	13/02/2012	4,500	C		
10	India	Beaumont	Ms	14/03/2013	2,300	B		

7 The formula at this point takes 10,000 (E5) to lookup the Dividend table. It will then extract the percentage from the second column (5\%) and multiply this by the 10,000 to arrive at the 500 dividend.

For Your Reference..

To start a complex formula:

1. Determine which is the most intricate operation
2. Type the formula or function required for this operation
3. Test the results

Handy to Know...

- Range names make it much easier to reference ranges in formulas - you can simply select the range name from the list of names in the Defined Names group on the FORMULAS tab, rather than having to reference the parameters of the range.

Adding More Operations

Once the base operation of a complex formula has been entered and tested you are ready to add more operations. Excel provides some tools to assist when adding more operations to a
formula. For example, you can add multiple lines to the formula to make it easier to read. Also, if you don't add the correct number of left and right brackets, Excel will attempt to correct this for you.

Try This Yourself:

Continue using the previous
Ẽ file with this exercise, or
open the file E1318
Complex Formulas_3.xlsx...
(1)

Double click in cell $\mathbf{G} 5$ to place it in edit mode
2
Click on the expand arrow at the right of the Formula Bar to expand the Formula Bar

3
In the Formula Bar, click to the left of 2, press Del to remove it, then press AAtt + Enter to start a new line
Type IF(F5=" ${ }^{\prime \prime}$ ",2,3 , then press Enter
We left a bracket out, but Excel is suggesting a correction. Formulas must have the same number of left and right brackets...
Click on [Yes] to accept Excel's correction, then click in cell $G 5$ to review the operation of the formula Since cell F5 doesn't equal A, the lookup table is taking the percentage from column 3. 4% of 10,000 is $400 \ldots$

Click in cell $\boldsymbol{F 5}$, type \mathbf{A} to change the scale, then press Enter to see the formula change to show 500

(3)

(5)

For Your Reference...

To add more operations to a complex formula:

1. Place the formula in edit mode by double clicking on it or pressing ${ }^{[2}$
2. Make the desired changes, then press Enter

Handy to Know...

- You can choose to make changes to a formula either in the Formula Bar or in the cell that contains the formula. The method you choose doesn't make any difference to the formula.

Editing A Complex Formula

When you place a formula in edit mode by either double clicking on the cell containing the formula or by selecting the cell and pressing $E 2$, the formula will appear colour-coded in the cell. The
colouring allows you to see which cells and ranges are referenced by the formula. It also shows you sets of left and right brackets so that you can see whether the brackets are balanced.

Try This Yourself:

Continue using the previous
气
file with this exercise, or open the file E1318 Complex Formulas_4.xlsx...
(1) Double click in cell G5 to place it in edit mode Notice the colouring used for the matching brackets.
2 Click anywhere in the IF part of the formula to see the tooltip for the IF formula, then click on [value-if-false], as shown, to see that part of the function
We need to extend our IF function to include scale A, B, and $C .$.
(3) Type IF(F5="B",3,4)

Notice how the colours of the brackets are updated.
4 Press Enter to complete the formula changes
5 Click in cell $\mathbf{F 5}$, type B, then press ctrrl Enter
The dividend should change to 400 (10,000 x 4\%)...
6 Type C, then press ctrl + Enter
The dividend should change to $200(10,000 x$ 2\%)
(2)

(3)

For Your Reference..

To edit a complex formula:

1. Double click in the cell containing the formula, or click in the cell and press
2. Click on the relevant function to change, then click on the hyperlinked text in the tooltip
3. Make the appropriate changes

Handy to Know...

- Clicking on the hyperlinked tooltip text when you have placed the cursor on a function within an edited formula makes it easier to select parts of the function to change.
- The outer brackets of a complex formula are always black.

Adding More Complexity

As you add more operations to a formula you are adding to the complexity of that formula. Make sure you remember the BODMAS rules. Even where operations nested in the formula adhere to
the rules of BODMAS it is often helpful to enclose specific operations within their own brackets simply to keep them understandable and readable.

Try This Yourself:

Continue using the previous
$\stackrel{\cong}{\approx}$ file with this exercise, or open
๗゙ ${ }^{\circ}$ the file E1318 Complex
Formulas_5.xlsx...
1 Double click in cell G5 to place it in edit mode

2
Click to the left of VLOOKUP, then type (

Notice that the colour of the brackets no longer matches. You have a black left bracket but no matching right one...
(3) Press Ctrl + End to move to the end of the formula, then press Alt + Enter to start a new line

4
Type +IF(D5<=
This is the start of the operation that will calculate whether a bonus is due in addition to the dividend.

5
Click on the FORMULAS tab, click on Use in Formula in the Defined Names group, then click on BonusDate

6 Type, (a comma), click on Use in Formula again, then click on BonusRate

7
Type ,0) to complete the IF function, then) to add the remaining bracket

8
Press Ctrl + Enter to complete the formula

(2)

(4)

8
8

For Your Reference...

To add more complexity to a complex formula:

1. Double click in the cell containing the formula, or click in the cell and press F2
2. Remember to adhere to the rules of BODMAS and add brackets if required

Handy to Know...

- Placing new lines in a formula in the Formula Bar can make the formula a little easier to understand. Where possible place each operation of the complex formula on a new line.

Copying Nested Functions

Formulas that contain nested operations can be copied in a worksheet or workbook just like any other formula. However, you should be especially careful of the cell addresses used in the formula
to ensure that they adjust as required. The need for absolute cell addressing can sometimes be difficult to identify in longer and complex formulas.

Try This Yourself:

Continue using the previous
※ © file with this exercise, or
心iv open the file E1318 Complex Formulas_6.xlsx...

1
Double click in cell G5 to place it in edit mode
The references to cells E5, F5, and D5 all need to adjust as the formula is copied down. The named ranges will need to lock into their specific address fortunately named ranges are absolute as a default..

2
Press Esc to cancel edit mode as there is nothing we need to do to the addressing

3
Double-click on the fill handle of cell G5 to fill the formula down

4 Click in cell G15, click on the FORMULAS tab, then click on AutoSum in the Function Library group to commence a Sum function

5
Press Enter to complete the function

6
Click in cell G15 again, click on the HOME tab, click on Cell Styles in the Styles group, then click on Total

7
Click in cell $\boldsymbol{A 1}$ to see the formatting
(3)

4	A	B	C	D	E	F	G	H	1
1	Alpheius Global Enterprises								
2	Superannuation Dividends								
3									
4	Firstname	Lastname	Title	Joined	Investment	Scale	Dividend		
5	Pedro	Kavana	Mr	15/05/2012	10,000	C	700		
6	Jessica	Dunn	Miss	12/04/2013	12,000	A	1,200		
7	Tim	Nyguen	Mr	13/05/2013	3,000	A	240		
8	Fabian	Considine	Mr	12/01/2013	12,500	C	875		
9	Rose	Jovanovski	Ms	13/02/2012	4,500	C	270		
10	India	Beaumont	Ms	14/03/2013	2,300	B	161		
11	Bryn	Underwood	Mr	12/03/2013	1,200	A	96		
12	Sylvia	Schenk	Ms	1/03/2012	2,300	B	161		
13	Courtney	Perera	Miss	23/02/2012	15,000	C	1,050		
14	Shivanthe	Rasheed	Ms	21/01/2013	23,000	C	2,070		
15									
16		-							
17									

	A	B	c	D	E	F	G	H	1
1	Alpheius Global Enterprises								
2	Superannuation Dividends								
3									
4	Firstname	Lastname	Title	Joined	Investment	Scale	Dividend		
5	Pedro	Kavana	Mr	15/05/2012	10,000	C	700		
6	Jessica	Dunn	Miss	12/04/2013	12,000	A	1,200		
7	Tim	Nyguen	Mr	13/05/2013	3,000	A	240		
8	Fabian	Considine	Mr	12/01/2013	12,500	C	875		
9	Rose	Jovanovski	Ms	13/02/2012	4,500	C	270		
10	India	Beaumont	Ms	14/03/2013	2,300	B	161 ;		
11	Bryn	Underwood	Mr	12/03/2013	1,200	A	96		
12	Sylvia	Schenk	Ms	1/03/2012	2,300	B	161		
13	Courtney	Perera	Miss	23/02/2012	15,000	C	1,050		
14	Shivanthe	Rasheed	Ms	21/01/2013	23,000	C	2,070		
15							=SUM(G5:G14		
16							SUM(number	num	
17									

For Your Reference..

To copy a nested function:

1. Check the cell references and adjust for absolute addressing if required
2. Copy the formula using your preferred copying methodology

Handy to Know...

- Remember, a named range refers to a specific and absolute location in a workbook. Therefore there is no need to mark range names as absolute in formulas.

Switching To Manual Recalculation

Recalculation refers to processing the formulas in a spreadsheet to calculate new results.
Formulas are usually recalculated each time a value in a dependent cell changes, but you can
turn off automatic recalculation and instead set Excel to manual. This means that no formulas will be recalculated unless you specifically request Excel to perform the calculations.

Try This Yourself:

Continue using the previous
§o file with this exercise, or open
ぶ Formulas_7.xlsx...
(1) Click in cell $\mathbf{F 5}$, type \mathbf{A}, then press Enter
The dividend and total will update to reflect the change...
2 Click on the FORMULAS tab, then click on Calculation Options in the Calculation group
(3) Select Manual

4 Click in cell $F 5$, type \mathbf{C}, then press Enter
This time the dividend and total won't change...

5
Click on Calculate Now in the Calculation group on the FORMULAS tab to force a manual update

6
Click on Calculation Options in the Calculation group on the FORMULAS tab, then click on Automatic to restore the settings to automatic calculation

7
Click on the collapse arrow at the right of the Formula Bar to collapse the Formula Bar back to its default size

(1)

(2)

	A	B	C	D	E	F	G	H	1
1	Alpheius Global Enterprises								
2	Superannuation Dividends								
3									
4	Firstname	Lastname	Title	Joined	Investment	Scale	Dividend		
5	Pedro	Kavana	Mr	15/05/2012	10,000	C	1,000		
6	Jessica	Dunn	Miss	12/04/2013	12,000	A	1,200		
7	Tim	Nyguen	Mr	13/05/2013	3,000	A	240		
8	Fabian	Considine	Mr	12/01/2013	12,500	C	875		
9	Rose	Jovanovski	Ms	13/02/2012	4,500	C	270		
10	India	Beaumont	Ms	14/03/2013	2,300	B	161		
11	Bryn	Underwood	Mr	12/03/2013	1,200	A	96		
12	Sylvia	Schenk	Ms	1/03/2012	2,300	B	161		
13	Courtney	Perera	Miss	23/02/2012	15,000	C	1,050		
14	Shivanthe	Rasheed	Ms	21/01/2013	23,000	C	2,070		
15							7,123		
16									
17									

4

For Your Reference...

To turn off automatic formula calculation:

1. Click on the FORMULAS tab
2. Click on Calculation Options in the Calculation group
3. Select Manual

Handy to Know..

- The Calculation settings are global and will affect every spreadsheet you work with. You can't force only one workbook to require manual recalculation without affecting others without doing some complex programming.

Pasting Values From Formulas

Sometimes it's useful to be able to take the results of a calculation and use the value elsewhere in a spreadsheet without keeping the formula. For example, you may want to keep a
copy of some data at a certain point in time, knowing that it won't change at a later date. You can do this by copying formulas and pasting only the values.

Try This Yourself:

Continue using the previous file, or open the file E1318 Complex Formulas_8.xlsx...

1
Select the range B4:B14, hold down ctril, then select the range G4:G14
The first range contains text while the second contains formulas (values)...
Click on the HOME tab, then click on Copy in the Clipboard group to copy the ranges
3
Click in cell J4
This will be the start of where we'll paste the copied data..
(4)

Click on the bottom half of Paste in the Clipboard group to see the paste options
5
Point to the various options to see a Live Preview of how the data will appear when pasted

6
Click on the third option in the Paste Values section to paste the data as values

(4)

6

For Your Reference...

To paste values from formulas:

1. Select the data to copy, click on the HOME tab, then click on Copy in the Clipboard group
2. Click where you want to paste the data, then click on the bottom half of Paste in the Clipboard group and select an option

Handy to Know...

- When you copy formulas, you have the option to paste formulas, values and links. A link is a reference to the cell containing the formula. For example, if the cell containing the copied formula is cell G12, the link created by pasting will be $=\mathbf{\$ G} \$ 12$.

Documenting Formulas

Complex formulas can be difficult enough to decipher just after they've been written, let alone after a week or a month. Therefore, as soon as you have completed a complex formula and it is
working, it is a good idea to document it. There are many options for doing this but one simple way is to place a comment in the cell of the formula.

Try This Yourself:

Continue using the previous file \cong ※ with this exercise, or open the file
ぶiL E1318 Complex
Formulas_9.xlsx...

1) Click on the expand arrow for the Formula Bar, then click in cell G5 to see the first instance of the formula

2
Click on the REVIEW tab, then click on New Comment in the Comments group to insert a Comment box

3
Click under the name, then type the following text:
A dividend percentage is calculated by using the investment to look up the appropriate scale from the Dividend table (see Constants worksheet). A bonus is added if the date joined is on or earlier than 30/6/2004.

The investment amount is then multiplied by the calculated dividend percentage.

4
Resize the Comment box to fit the text so it appears as shown

5
Click in cell $F 5$ to deselect the commented cell

6
Point to the red marker in cell G5 to see the Comment box

7 Click on the collapse arrow at the right of the Formula Bar to collapse the Formula Bar back to one line again

(2)

4

For Your Reference...

To document a formula using a comment:

1. Click in the cell containing the formula
2. Click on the REVIEW tab, then click on New Comment in the Comments group
3. Type the comment text

Handy to Know...

- There is no need to place a comment in every cell that uses the formula - the worksheet would become too cluttered if you did. If the formula is filled as ours has been here then you really only need a comment in the first formula cell.

